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Deformation of bounded beams, when reflected from or transmitted through layered media, 
have always been discussed in connection with the generation of surface waves assuming an 
inhomogeneous field of leaking energy reradiating from the interface and interfering with the 
reflected or transmitted wave. By extending the theory of Claeys and Leroy [J. Acoust. Soc. 
Am. 72, 585-590 (1982) ], who introduced a description of a bounded beam by means of 
inhomogeneous waves, it is possible to separate the scattered profile from the leaky wave 
component and prove that all of the features occurring in the neighborhood of critical angles 
can be explained as purely reflection/transmission phenomena of particular complex harmonic 
waves, where no propagation along the interface or reradiation is involved. The findings are 
illustrated for various profiles incident on different layered media both for reflection and for 
transmission. 

PACS numbers: 43.35.Pt, 43.35.Mr, 43.20.Gp 

INTRODUCTION 

When homogeneous plane waves reflect with mode con- 
version from or refract through an interface between two 
viscoelastic media, inhomogeneous plane waves are genera- 
ted with exponentially decaying amplitudes along the wave 
fronts. 1-3 Such waves can be called complex harmonic 
waves, because of their complex-valued wave vectors, or al- 
ternati. vely also heterogeneous waves. Although most inter- 
est has always been shown for classical plane homogeneous 
waves, heterogeneous waves are the most general solution of 
the wave equation for a homogeneous and isotropic linearly 
viscoelastic material. Futhermore, surface waves cannot be 
described by homogeneous waves but it is well known that 
they are locally a combination of heterogeneous waves. 4 A 
thorough investigation of these waves in acoustics has start- 
ed only recently. 5-9 Reflection and transmission properties 
for heterogeneous waves at layered media are found to be 
highly dependent upon the physical makeup of the sample 
under consideration. The nature of Rayleigh, Stoneley, and 
Lamb waves are related to poles of the reflection coefficients 
occurring at specific heterogeneity angle of incidence combi- 
nations. lø Claeys and Leroy TM were the first to use bulk heter- 
ogeneous waves as fundamental parts of the description of a 
bounded beam. Their theory predicted the same profile de- 
formations as was found with Fourier analysis. However, 
the restriction in the decomposition of the incident bounded 
beam to complex harmonic waves with positive heterogen- 
eity (decaying towards the upper surface of the layered me- 
dium) prohibited them from explicitly showing the presence 
of interface waves. 

a) Aspirant of the Belgian National Foundation for Scientific Research. 

In the present paper we will interpret bounded beam 
deformations at layered media with plane interfaces in terms 
of the reflection and transmission coefficients for bulk heter- 
ogeneous waves, with both positive and negative heterogen- 
eity, and prove the existence of surface waves as part of the 
scattered field. In contrast with the classical ray formalism 
explaining the generation of surface waves as a temporary 
conversion of a homogeneous wave into a surface wave that 
propagates over a certain distance along the interface and 
then reradiates by conversion into a heterogeneous bulk 
wave, no propagation nor reradiation is involved in our mod- 
el. Apart from a meaningful physical interpretation, other 
advantages of the heterogeneous wave decomposition of 
bounded beams are the ability to describe nonspecular ef- 
fects at large angles of incidence and the prediction of an 
optimum beamwidth range in order to generate strong sur- 
face waves and to observe large deformations in their pro- 
files. We will verify these statements with a large number of 
illustrations. 

I. COMPLEX HARMONIC WAVE REFLECTION AND 
TRANSMISSION 

A. Representation of a complex harmonic wave in a 
viscoelastic medium 

Following the pioneering work performed in electro- 
magnetism and optics, the complex harmonic acoustic wave, 
propagating in an infinite isotropic, homogeneous, isotherm 
but viscoelastic medium with constant acoustic characteris- 
tics and initially at rest, has been described in detail by many 
specialists in acoustics. 1-9 The geometry is shown in Fig. 1. 

Taking into account only "in plane" motions (no shear- 
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FIG. 1. Vector representation of heterogeneous waves. 

horizontal waves), the general mathematical representation 
ofx and z displacements of such waves in a solid medium can 
be expressed in terms of potential functions •b(x,z,t) and 
gb(x,z,t), which both satisfy a Helmholtz equation 
q•(x,z,t) = 3(x,z)e-iwt, [hxz ql_ 4 ]3(X, Z) = 0, 

(1) •(x,z,t) = b(x,z)e-% [ a• + 4]?P(x,z) = 0, 
where A•z is the Laplace operator 3 2/O•X2 -[- O • 2/O•22, O.) is the 
circular frequency, t is the time, and •Ca and •Cs are the com- 
plex-valued wave numbers for the dilatational and shear 
wave components. These potential functions •b and gb may be 
written as 

qb(x,z,t) = Aa exp [i(ka-r - cot) ], 
gb(x,z,t) = As exp [i(ks-r -- cot) ], (2a) 

and are solutions of Eq. ( 1 ) provided that 
kd'kd =/•d and ks'ks = •s- (2b) 

The displacements then follow from: 

u x ( x,z,t ) = 8qb 8gb ] 8x 8z ' 

Uz ( X,Z,t ) = •z q- •xx ' (3) 
In general Aa and As are complex constants while ka 

and ks are complex vectors. We will show the physical 
meaning of these vectors by considering for the moment only 
the dilatational component. Therefore we write ka as 
k3 + fl•$, where the real-valued vector k3 defines the angle 
0a with respect to the positive z direction, and k;; (also real 
valued) can be decomposed into a component aa along k3 
and a component/5'a orthogonal to k3 (Fig. 1 ). In terms of 
xa-za coordinates we obtain the following more revealing 
expression for •b (xa ,za ,t): 

qb(xa,za,t) = A a exp(13ax a )exp( - aaz a) 
X exp [ i( k 3za - cot) ], (4) 

which is the mathematical description of a plane harmonic 

wave propagating in the za direction with a phase velocity 
co/k • and--if/5'a and aa are both positive--decaying both 
in the negative x a direction and in the positive za direction 
by different amounts:/5'a represents the heterogeneity while 
aa corresponds to the attenuation of the wave in the propa- 
gation direction. The planes za = constant are the planes of 
constant phase (wave fronts) and the planes 
13axa --aaza = constant define the planes of constant am- 
plitude. 

With these definitions the x and z projections of the 
wave vector become: 

[ k d ] ,, = [ k• ] ,, + i[ k•' ] ,, 
= k • sin Od + lad sin Od -- il•d COS Od, 

[ kd ] z = [ k• ] z + i [ k•' ] z (5) 
= k • cos Od + lad COS Od + il•d sin Od, 

with 

and 

' I'l kd= k d , ad=• k•'-k 3 

/3a [kS aak3 ] 
Depending on the values of/5'a and aa, the homoge- 

neous (/3d = 0, ad = 0), attenuated homogeneous (/3a = 0, 
ad-•0), and pure inhomogeneous wave (13a-•0, ad = O) 
can be derived. However, not all combinations of k •, aa, 
and/3d are possible: Equation (2b), the complex dispersion 
relation, links the heterogeneous wave characteristics to two 
specific real-valued medium constants, va and aa, respec- 
tively the acoustic velocity and attenuation. Written in terms 
of real quantities, this condition requires that 

k •2 _ a• - l? • = k o2a - a•a, 
k 3 aa = koa' aoa ( 6 ) 

with 

ko d = (o/o d, aod -- (020•d, and kOd q- iaod -- K d . 

With only two equations for three unknowns, we may con- 
clude that it is possible to obtain (in any medium in every 
direction and for each frquency) an infinite number of dila- 
tational heterogeneous waves, characterized by the multi- 
plet (koa,aoa,k •,aa,l•a,Oa), where the first two constants 
specify the medium, the three following parameters deter- 
mine the nature of the waves satisfying Eqs. (6), and Oa 
defines the angle between the propagation direction and any 
fixed direction identified as the z axis of an orthogonal coor- 
dinate system. These interpretations and conclusions also 
hold for the case of shear waves in a solid medium. 

B. Reflection and transmission of heterogeneous 
waves 

We assume that a heterogeneous wave characterized by 
k •, am, /3m (rn- d or s), satisfying the dispersion rela- 
tions, is incident at an angle Om on a plane interface between 
two viscous media. In general this wave will split its energy 
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FIG. 2. (a) Complex harmonic wave scattering at a plane boundary be- 
tween two solids. (b) Geometrical representation of the generalized Snell- 
Descartes laws. 

As k Or and aor are known medium constants (for a giv- 
en frequency) Eqs. (7a) and (7b) form a set of four real 
(nonlinear) equations in four unknown variables: 
k •, at, /3r, and 0r. Techniques to solve this set are described 
for several cases by Deschamps et al. ]3 In order to deal with 
reflection, one can always first treat the generated reflected 
wave as being transmitted through an imaginary interface 
between two identical media, followed by mirroring the re- 
sulting wave with respect to the interface: 
( kor,aor,k ;,ar,fir,Or ) --} ( kor,aor,k •,ar, -- fir,7' I' -- O r ). 

As important results and curiosities, we recall that ho- 
mogeneous waves can generate inhomogeneous bulk waves 
if at least one of the two media is absorptive; inhomogeneous 
waves can generate homogeneous waves; under certain cir- 
cumstances angles of refraction 0 r larger than 90 ø can be 
obtained and even a sequence of diminishing refraction an- 
gles for growing incident angles Ore. Also, the fact that the 
same complex harmonic wave incident at Orn and at 
--Orn generate a different set of heterogeneous waves is 

quite remarkable. Furthermore, if the multiplet (korn, 
aom,k •,arn,/•rn,Om ) leads to the solution (kor,aor,k •,ar, 
/•r,Or), it is not generally the case that (korn,aorn, 
k ;,am, -- firn,Orn ) brings up the solution (kor,aor,k •, 
am, --/•r,Or ) as one would expect. This will have important 
consequences in the study of the reflection and transmission 
through a layered medium. 

The determination of reflection and transmission coeffi- 

cients for the scattering of a plane acoustic wave incident on 
a layered medium has been described in detail by Brekhovs- 
kikh ]8 for homogeneous waves and nonabsorbing layers. In 
order to include attenuation and heterogeneity, it is advis- 
able to work from the beginning with complex valued quan- 
tities such as the different dilatational and shear wave 
numbers rather than real-valued velocities and to avoid ex- 

pressions as functions of real angles (sin 0,cos 0,... ) but pre- 
ferably use the complex valued x and z wave-vector projec- 

into two reflected (one dilatational and one shear) and two 
transmitted (one dilatational and one shear) heterogeneous 
waves [ Fig. 2 (a) ] with different directions. The nature of 
these waves and their directions with respect to the z axis 
follow immediately from the fact that continuity is required 
at the boundary of both media in combination with the com- 
plex dispersion relations for the new propagation medi- 

12-17 
am. 

The continuity conditions demand invariability of the x 
coordinate, leading to the generalized Snell-Descartes laws 
[Fig. 2(b)]: 

k r sin Or -- k m sin Ore, 
(7a) 

a r sin Or -- fir COS Or = am sin O m -- Bm COS Ore, 

where the subscript r refers to any of the four generated 
waves. In addition the new dispersion relations have to be 
satisfied: 

k ;2 2 2 -- ar -- /• r = k •) r -- ao2r, 
k r'ar = kor'aor. 

(7b) 

x i 

(k: 

d 

FIG. 3. Complex harmonic wave scattering at a solid layer immersed in 
water. 
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tions. Brekhovskikh's formulation, however, can be 
followed step by step without any changes. 

In the present study, we will restrict ourselves to the 
case of a solid plate of thickness d immersed in a liquid bath. 
As a consequence only dilatational waves can insonify the 
plate, and only this type of wave has to be considered in 
reflection and transmission. Therefore we can omit the sub- 
script of the incident, reflected, and transmitted wave with- 
out confusion. 

We assume that a longitudinal heterogeneous wave with 
multiplet ( konq,aonq,k ',a,/3,0) and k,, -- k' sin 0 
+ ia sin 0 -- i/3 cos 0 is incident on the solid layer at an an- 

gle 0 and generates a reflected and transmitted longitudinal 
wave in the liquid, and up and downwards traveling dilata- 
tional and shear waves in the solid (Fig. 3 ). The angle, phase 
velocity, attenuation, and heterogeneity characteristic for 
each generated wave can be calculated by solving the nonlin- 
ear set of equations (7) considering appropriate medium 
constants. 

Brekhovskikh's theory, applied for complex wave 
numbers, then yields the following expressions for the com- 
plex-valued reflected and transmitted amplitudes: 

RN( k,, ) 
R(k,,) = , (8) 

Fs(k,,)'F,•(k,,) 
TN(k,, ) 

r(k,,) = , (9) 
Fs(k.,,).F,i(k.,,) 

with 

2)4 4 2 2 •S(• ) = (• - 2• • + 16• • •s - p%• •/• 
+ 8k•s(•- 2k•) 2 
x [ 1 - cos (d;•) cos (d;s) ] 
X [sin(d•a)sin(d•'s) ]--1, 

TN( k• ) -- 2/ptCs4•a/• [ (• -- 2k } ) 2/sin (d•a) 

q- 4k 2 •a•s/Sin (d•s) ] 

Es(k,,): (•s -- 2k2 )2 cot(d•a/2) + 4k 2•a•s cot(d•s/2) 

F,•(k,,) 

: (•s -- 2k2 )2 tan(d•a/2) + 4k2•d•s tan(d•s/2) 

Here, tc, tCd, % are the complex valued wave-number con- 
stants (for a specific frequency) inherent to longitudinal 
waves in the liquid and dilatational and shear waves in the 
solid, p is the ratio of liquid to solid mass densities, and 
•2:K2_k2 x,•:tt•a--k 2 and•sZ =•--k} 

Some examples illustrating the behavior of the modulus 
of reflection and transmission coefficients as function of an- 

gle of incidence and heterogeneity are shown in Fig. 4 (brass 
plate, fd = 2.5) and Fig. 5 (stainless steel plate, fd = 4.0). 
The medium constants used in the calculations are listed in 
Table I. 

As carefully examined in Refs. 19-21, the roots of the 
denominator of R and T correspond to the x compondnts of 
the wave numbers of the leaky Lamb modes: 

for the symmetrical Lamb modes Fs (k,,) = O, 
for the asymmetrical Lamb modes F• (k•) = 0. 

Ilk • is such a root, one can easily find the exact Lamb angle, 
phase velocity, attenuation, and heterogeneity of the corre- 
sponding leaky Lamb wave components in the liquid at both 
sides of the plate by solving: 

IRI 

3.5 

ITI 
6 

• z.r s o (a) (b) S 0 
FIG. 4. Heterogeneous wave reflection (4a) and transmission coefficients (4b) as a function of angle of incidence and heterogeneity for a viscous brass plate 
of thickness 0.5 mm in water at 5-MHz frequency. Peaks correspond to S2, A i, So, and Ao Lamb modes and to the Stoneley mode. The St mode at an angle of 
about 19.6 ø ( =0•c ) is not noticeable with the actual grid. 
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IRI 

2 

1 

(a) 

ITI 
1.5 • 

1 

-1.5 

90 

0 9O 
/• O.75• 3 

ß , (b) 1.5 

FIG. 5. Heterogeneous wave reflection (5a) and transmission coefficients (5b) as a function of angle of incidence and heterogeneity for a viscous stainless 
steel plate of thickness 2.0 mm in water at 2-MHz frequency. 

kL sin 0L = Re(k •) x , 

a• sin 0• --/3• cos 0L = Im(k •) x , 

• O!iq -- aoliq, 

kL' eL = koliq ' aoliq ß (10) 

Note that, as/3• is usually not equal to zero, there is a slight 
difference between k• and k o]iq. Therefore, the exact Lamb 
angle is somewhat different from the one found in the litera- 
ture, •9-2• which is usually incorrectly defined by 

sin 0• = Re(k L )/koliq x ø 

The solution (k•,a•,/3•,O•) with 0<0L < •r/2 has to be in- 
terpreted as the particular incident complex harmonic wave 
for which leaky Lamb waves are generated traveling inside 
the plate with velocity w/Re(k •L) along the x direction, 
while energy is leaking through the interfaces above and un- 
derneath the plate [ Fig. 6 (a) ]. These energy flows are repre- 
sented by two heterogeneous wave: (k•,a•,-/3•,•r- O• ) 
in reflection and (kL,a•,/3•,O•) in transmission. 4 Further- 
more, the expression for the reflected potential function 
along the interface (z = 0) in the liquid corresponds to 

R(kx )exp(/3•x cos 0L )exp( --a•x sin 0• ) 

Xexp[i(k•x sin O• --cot) ]. (11) 

TABLE I. Values of medium constants used in calculations. 

Dilatational Shear Dilatational Shear 
velocity velocity attenuation attenuation Density 

va v• aa X 10 • a• X 10 • p 
[ m/s ] [ m/s ] [ s2/mm ] [ s2/mm ] [ kg/m 3 ] 

Brass 4410 2150 30 130 8.6 
Steel 5790 3200 50 150 7.9 
Water 1480 '" 0.6 '" 1.0 
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This means that the amplitude of the particle displacements 
on the level of the interface is exponentially decaying (for 
/3L < 0) in the positive x direction. This interpretation will 
appear to be very useful when we discuss the trailing field of 

' .U.M •x 

(a) 

L 

Leaky Lamb Wave 

I_.• $toneley Wave 

I •s 
I 

(b) 

FIG. 6. (a) The leaky Lamb wave: a particular case of the reflection/trans- 
mission phenomena of complex harmonic waves. (b) The Stoneley wave: a 
resonance at 90 ø . 
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a bounded beam as a result of reflection/transmission. The 
characteristics of the waves inside the plate follow immedi- 
ately from the generalized Snell-Descartes laws. 

Close examination of Figs. 4 and 5 immediately yields 
all possible combinations (fi, 0) that lead to the excitation of 
vibrational modes in the plate (peaks of R and T). Note 
however that due to the nonzero grid dimensions not all 
modes are visible on the three-dimensional figures. For the 
brass plate in Fig. 4, e.g., the peak corresponding to the 
Lamb mode located near the longitudinal critical angle is so 
sharp and small that we are not able to observe it with the 
grid used. However, its existence is beyond doubt, and could 
be shown by adjusting the grid spacing. 

At grazing incidence we find another reflection surface 
mode: the Stoneley wave [Fig. 6(b) ]. Substituting 0 = 90 ø 
into Eq. ( 11 ), it is obvious that the amplitude of this wave 
remains constant while propagating, apart from a small re- 
duction caused by attenuation in the liquid. 

It is important to note that the excitation of surface 
waves has been explained here as a pure reflection/transmis- 
sion phenomenon of heterogeneous waves. No temporary 
propagation along the surface and no re-emission was as- 
sumed. We will use this fact in the following section where 
we will build up a bounded beam by means of these types of 
waves. 

II. BOUNDED BEAM REFLECTION AND 
TRANSMISSION: 

A. Bounded beam representation 
In most studies involving reflection and transmission of 

bounded beams, Fourier analysis is used in order to properly 
account for the bounded character of the ultrasonic beam 
before and after reflection/transmission. 2•-26 This numeri- 
cal integration technique uses an infinite spectrum of plane 
homogeneous waves with different directions to describe the 
beam profile. The resulting reflected and transmitted pro- 
files clearly illustrate all of the attendant phenomena such as 
beam displacements, null-zones, and trailing field. We note, 
however, that it is not possible to prove the presence of a 
leaky Lamb wave component in the spectrum of the reflected 
or transmitted beam since homogeneous waves do not 
change their heterogeneity characteristics when reflected or 
transmitted in the same medium. 

More recently Claeys and Leroy • introduced another 
method that accounts for the finite dimensions of an acoustic 
beam profile. Their method is based on the decomposition of 
a known profile into a finite discrete series of heterogeneous 
waves propagating in one specific direction. This concept 
also explains the nonspecular effects of deformation at criti- 
cal angles. 27-29 

The fact that Fourier analysis is not straightforward on 
the matter of the generation of surface waves and that this 
method leads to numerical problems for small profiles and 
large angles, has stimulated us to investigate the method of 
Claeys and Leroy more thoroughly. 

As we already mentioned earlier, the heterogeneous 
wave is the most general solution of the equation of motion. 
The problem being linear, any linear combination of hetero- 

Eo.$. 

O.O- 

6 

(a) 

i i i i i 

4 •, 0 --,• --4 --6 

x/w 

1.5 

EO.5 

O.O 

(b) 

i i i i i i i 

xi/w 

FIG. 7. Approximation of Gaussian and "square" profiles by means of a 
discrete series of heterogeneous waves with positive and negative heterogen- 
eity coefficients. 

geneous waves satisfying the dispersion relations, will also be 
a solution of the wave equation, which means that general 
displacements can be expressed by a potential function of the 
following form: 

• A.e/•'•X'e-'•'•'e i(•';•'-øt) (12) 
with for all values of the summation index n 

k ;2 2 2 2 2 -- a.-- fi.= k Oliq -- aoliq, 
k n 'an : konq 'aonq 

and 

(kx) • = k; sin 0 + ia. sin 0 - ifi. cos O. 
In their description of the incident profile, Claeys and 

Leroy restricted their analysis to inhomogeneous waves with 
amplitude variations along the wavefront that decay expo- 
nentially towards the upper side of the plate (fin •>0). It is, 
however, a more general approach to use both decaying 
(fin •>0) and exponentially growing (fin <0) heterogeneous 
waves. The advantage of this generalization will become 
clear in the present study. 

Any profile defined by f(xi ) at zi = O, can be approxi- 
mated by a suitable combination of complex harmonic 
waves, such that their amplitude and heterogeneity satisfy 

f(xi)= • A, . (13) 
Figure 7 illustrates the results for a Gaussian and a "square" 
profile using this method. Although divergence is an inher- 
ent and inevitable characteristic of the heterogeneous wave 
decomposition, we observe good approximation within sev- 
eral beamwidths. 

Let us focus now on the reflection and transmission of a 
Gaussian beam of half-width W on a plate immersed in wa- 
ter. A fairly good approximation of this symmetrical profile 
was obtained by 
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TABLE II. Table of relative amplitudes A, of the heterogeneous waves used in Eq. (14a) to build up a Gaussian profile (n,A,). 

0 -- 0.101585E00 8 -- 0.253160E02 16 -- 0.963892E-05 24 -- 0.116916E-15 32 
1 0.219627E01 9 0.801411E01 17 0.696972E-06 25 0.264569E-17 33 
2 -- 0.209847E02 10 -- 0.202240E01 18 -- 0.432819E-07 26 -- 0.518114E-19 34 
3 0.775777E02 11 0.414019E00 19 0.231621E-08 27 0.875971E-21 35 
4 -- 0.141464E03 12 -- 0.697106E-01 20 -- 0.107098E-09 28 -- 0.127424E-22 36 
5 0.155761E03 13 0.976173E-02 21 0.428722E-11 29 0.158749E-24 37 
6 -- 0.115878E03 14 -- 0.114722E-02 22 -- 0.148771E-12 30 -- 0.168354E-26 38 
7 0.623143E02 15 0.114003E-03 23 0.447807E- 14 31 0.150771E-28 39 

-- 0.112837E-30 
0.695937E-33 

-- 0.347116E-35 
0.136344E-37 

-- 0.405503E-40 
0.857345E-43 

-- 0.114701E-45 
0.729231E-49 

exp -- = A. e "', (14a) 
n = -- 39 

with 

13, = -13_, = n/1.9W, for n:-- 39'-'39, (14b) 
while the coefficients A, ( = A _, ) are given in Table II. An 
advantage of this method is that these coeflicents are inde- 
pendent of the width of the profile so that they can be tabu- 
lated, which reduces the computing time. 

B. Bounded beam reflection and transmission in terms 
of complex harmonic waves 

Again, because of linearity, the amplitude and phase 
distribution of the reflected and transmitted field for any 
angle of incidence 0 can be found by multiplying each heter- 
ogeneous wave by its complex valued reflection/transmis- 
sion coefficient: 

R (k '. sin 0 + ia. sin 0- i/•. cos 0) 
and 

T(k ', sin 0 + ia, sin 0- i/9, cos 0). 
Under normal conditions, for reflection [where each 

multipict (koliq,aoliq,k '.,a.,t•.,O) brings up the reflected 
complex harmonic wave (koliq ,aoliq,k; ,an, -- t•n,•r -- O) ], 

+ 39 
-- •nXr • R((kx),)A,e (15) 

n = -- 39 

will be a good approximation of the reflected profile at 
z r =0. 

Suppose, however, that (kx), corresponds to a pole of 
the reflection coefficient (or close to a pole). In this case Eq. 
(15) will be influenced by the appearance of dominating 
heterogeneous waves and hence a smooth reflection profile 
cannot be obtained. Nevertheless, we found an important 
argument to deal with this nonconvergence, leading to a 
meaningful explanation of the physical phenomena occur- 
ring for these particular circumstances (Fig. 8). We will 
show that the reflected field [Eq. (15) ] can be separated in 
two components with significant physical meaning. 

Let us first assume that circumstances are such that 

R (kx) has a pole (kxpol e ) with heterogeneity /3po•e < 0 
(which is the case for ordinary Lamb modes) and that the 
characteristics of the heterogeneous wave corresponding to 
this pole are close to those of one of the waves in the finite 
decomposition of the incident beam. Without affecting the 
energy balance, we can break apart the reflected field into 
two separate components, mathematically described by 

+ 39 

R((kx)o)Ao + 2 • R((kx)•)A•e -- •nXr 

and 

-1 

n = -- 39 

+ 39 
-- • -- •nXr R((kx).)A.e •rtXr E R((kx).)A.e 

+ 39 

= • A, [R((kx) _n)e l•nxr-- R((kx )n)e--l•nXr], 
n=l 

(16a) 

(16b) 

which interfere. 
We will now show that the first component represents 

the reflected profile and that the second component can be 
associated with the presence of the leaky Lamb wave. In- 
deed, for reasons of symmetry, it is obvious that in the case of 
specular reflectivity [R((kx )•)• In: -- 39--.39] Eq. (16a) 
describes the incident Gaussian profile again, while the 
expression (16b) converges to zero within the area of inter- 
est (no appearance of the leaky Lamb wave). On the other 
hand, when conditions are such that the decomposition of 
the incident beam [Eq. (14a) ] contains complex harmonic 
waves with negative heterogeneity/3_ • for which the reflec- 
tion coefficient R((kx )_ ,) tends to a value much larger 
than one, the terms R((k.,, ) _, )e/•""'r will dominate the addi- 
tional part (16b) while the separation prohibits the diver- 

x i 

• z r 

zi x 0 \/--- 
\ / - 

\ x 

! z t 

FIG. 8. Geometry of the reflection and transmission phenomena for bound- 
ed beams. 
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FIG. 9. Sequence of profile deformations in the reflected field of a Gaussian beam of 4-mm width, incident at angles in the neighborhood of a Lamb angle on a 
brass plate of 0.5 mm at 5 MHz. The incident profile is given by the full line. The two components in reflection, without interference, are represented by the 
dotted [ formula (16a) ] and the dashed line [ formula (16b) ]. As a reference, the dashed line marked with an arrow represents the nature of the exact leaky 
Lamb wave component (normalized) in the liquid. (a) 0 = 21.5ø; (b) 0 = 22.5ø; (c) 0 = 23.5ø; (d) 0 = 24ø; (e) 0 = 24.5ø; (f) 0 = 25.5 ø. Above each profile 
illustration, the modulus of the reflection coefficient for the various heterogeneous waves is given as a function of their heterogeneity. 
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FIG. 10. Sequence of profile deformations in the reflected field of a Gaussian beam of variable width at Lamb angle incidence ( 24 ø) on a brass plate of 0.5 mm 
at 5 MHz. Incident profile: ; attendant reflected profile [ formula (16a) ]: .... ; surface wave component [ formula (16b) ]: .... . The dashed line marked 
with an arrow represents the exact nature of the leaky Lamb wave component. (a) W= 50 mm; (b) W= 25 mm; (c) W= 10 mm; (d) W= 5 mm; (e) 
W = 2.5 mm; (f) W= 1.25 mm. 
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(c) 
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(d) 

FIG. 11. Interpretation of the heterogeneous wave reflection coefficient in 
terms of geometrical displacement A z - ln( IR l)//• cos(O) along the in- 
terface. (a) •>0lal<l=>•>0; (b) •>0IRI>I=>A<0; (c) 
#<0 In I< ]•a <0; (d)/5'<0 In I> I=:>A >0. 

gence of Eq. (16a) by having excluded them. Moreover, ex- 
tensive calculations have shown that the field represented by 
Eq. (16a) corresponds almost exactly to what Fourier anal- 
ysis predicts, with displacements, null zones, and other 
properties as expected. That is why we will speak about this 
first component as the attendant-reflected profile. The addi- 
tional component [Eq. (16b) ] contains the very important 
A,R((k,,) _, )e &"• terms. If the coefficients A, of the hetero- 
geneous waves with the largest reflection coefficients are not 
too small, Eq. (16b) is dominated by these terms and its 
behavior is governed by a sum of exponentially growing 
functions with growing constants --/3_, =/3, ( > 0), 
which are all very close to the decay characteristic of the 
leaky Lamb wave component generated in the fluid: 
--/3po•e ß The result is a function of which the path is similar 

to the curve of the exact Lamb wave (see Figs. 9 and 10). In 
other words, the presence of a leaky Lamb wave in the plate 
is connected to the contribution of the additional component 
(16b). 

We illustrate this separation procedure in two sequences 
of figures: Figs. 9 and 10. Every illustration of profile defor- 
mation in the present study is accompanied by a figure, 
showing the variation of the reflection/transmission coeffi- 
cient for the discrete heterogeneous waves that make up the 
incident profile. For both sequences, a Gaussian profile is 
assumed impinging with frequency 5 MHz upon a viscous 
brass plate of thickness 0.5 mm. The behavior of the hetero- 
geneous wave reflection coefficient as a function of angle of 
incidence and heterogeneity for this case is given in Fig. 4. In 
Fig. 9, the reflection of a profile with constant incident width 
of 4 mm is investigated at different angles of incidence 
around 24 ø . Close to the Lamb angle, we expect the strongest 
nonspecular phenomena in the intensity distribution of the 
reflected field. Figure 9 (d) shows that for this angle of inci- 
dence the component corresponding to the leaky Lamb wave 
field generated in the liquid [represented by the dashed line 
or Eq. (16b) ] is at its maximum while the deformation of the 
reflected beam [dotted line or Eq. (16a)] is most pro- 

nounced. Moreover, in all subfigures we observe that the 
exponentially decaying behavior of the dashed line closely 
approximates the Lamb wave nature of the expected surface 
wave (dashed line marked with an arrow). The only differ- 
ence between the various leaking energy components is a 
more or less pronounced shift to the right (direction of the 
plate). In connection with this remark, we must emphasize 
that the curve corresponding to Eq. (16b) in the nondiverg- 
ing region on the Xr axis only represents a relative measure- 
ment of the importance of energy leaking into the liquid, and 
that the exponential behavior of its corresponding field only 
locally exists and locally interferes with the modified profile 
in the form of a decaying tail connecting the profile with the 
surface of the plate. 3ø This means that instead of the infinite 
character of this component, we consider only the part that 
has physical meaning. The objection that the wave ampli- 
tude in the mathematical Lamb wave representation tends to 
infinity when traveling away from the surface is thereby re- 
futed. Knowing what Schoch displacement means for infi- 
nite heterogeneous waves (Fig. 11), this tail can even be 
located far before the convergent part of the attendant re- 
flected profile. A comparison of the Xr-COordinate values for 
which the amplitude of Eq. (16b) in the different cases is 
equal to unity provides essential information about the ex- 
tent of this exponentially decaying trailing field. 

Another sequence (Fig. 10) illustrates the influence of 
beamwidth variations on the leaky Lamb wave field at the 
Lamb angle of incidence 0L = 24.0 ø. The corresponding A • 
mode has a Lamb heterogeneity/3L approximately equal to 
-- 0.225/mm. We observe that once the beam is too wide, 

the peculiarities in the complex harmonic wave reflection 
coefficient are located too far from the region of incident 
heterogeneous waves with significant coefficients An, which 
results in not observing any leaking energy from a surface 
wave. Nevertheless, the profile is reduced in amplitude be- 
cause of a global reflection coefficient smaller than unity for 
all heterogeneous waves in Eq. (16a). Reducing the beam- 
width, the peculiarities shift toward smaller absolute values 
of the summation index n and therefore the exponential field 
becomes more and more noticeable. Since the most impor- 
tant coefficients in the decomposition of the incident beam 
are located between A_ •o and A •o, it is obvious from Eq. 
(14b) that the optimum beamwidth in order to produce 
strong leaky Lamb wave reflection and large deformations at 
0• corresponds to a value smaller than 5.26/l/3• I [Fig. 
10(c)-(f) ]. 

The apparent change of the slope of the curves corre- 
sponding to the surface wave component in every subfigure 
of Fig. 10 is only due to the fact that the value Xr/W is 
plotted in abscissa. Although the curves become steeper for 
larger W, the decay coefficient remains the same in all subfi- 
gures (•0.225/mm). One can take the amplitude value at 
Xr = 0 as a relative measurement of the importance of the 
surface wave component. 

As we see in Figs. 4( a ) and 5 (a), one also must take into 
consideration the case of poles of the reflection coefficient 
for which/3po•e > 0, e.g., at 90 ø, corresponding to the Stone- 
ley wave. The procedure we follow for this case is essentially 
the same as for the first case with the modification that the 
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FIG. 12. Gaussian beam reflection (width = 4 mm) near grazing incidence on a brass plate of 0.5 mm at 5 MHz. incident profile: •; attendant reflected 
profile [formula (17a) ]: ..... Stoneley wave component [formula (17b) ] ...... (a) 0-- 85ø; (b) 0-- 87.5ø; (c) 0= 89.0; (d) 0= 89.9 ø. 

profile is now made up of 
+ 39 

/• nX r R((k,• )o)Ao -!- 2 • R((k,• ) _.A _ . (17a) 

and the additional surface wave component in the liquid is 
given by 

+ 39 

• A.[R((kx).)e-ft'•r--R((kx)_.)e/•"Xr]. (17b) 
rt-=l 

If the amplitude decay corresponding to the inhomo- 
geneous Stoneley wave is present is the sequence ofheteroge- 
neities involved in the decomposition of the incident profile, 
the reflected profile (17a) is displaced in the positive Xr di- 
rection, while the second component is governed by the 

Stoneley wave in the liquid itself (Fig. 12). We emphasize 
that it is far more difficult and nearly impossible to obtain 
these results when applying Fourier analysis. 

Analogous separating procedures can be followed in the 
investigation of the transmitted field. Again, the total field 
can be separated into an attendant-transmitted profile that is 
essentially identical to the profile obtained by Fourier analy- 
sis, and an additional contribution representing the energy 
flow in the liquid beneath the plate due to generated leaky 
surface waves (Fig. 13). We note here that the nature and 
intensity of the Lamb wave radiation is the same in reflection 
as in transmission and that as a consequence the trailing field 
above and underneath the plate extends over comparable 
distances. This can also be observed in the experiments re- 
ported by Plona et al. 19.21 
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FIG. 13. Gaussian beam transmission (width = 4 mm) near Lamb angle (24 ø) through a brass plate of 0.5 mm at 5 MHz. Incident profile: •-; attendant 
transmitted profile [ formula (16a) ] ..... surface wave component [ formula (16b) ] ..... . The dashed line marked with an arrow represents the exact nature 
of the leaky Lamb wave component. (a) 0 = 21.5ø; (b) 0 -- 22.5; (c) 0 = 23.5ø; (d) 0 = 24.0 ø. 

It is also possible to apply this separation procedure for 
other kinds of profiles, for instance the square profile which 
can be described as a combination of two overlapping Gaus- 
sian beams displaced in opposite direction over the same 
distance, or the side-lobe profile. Results for the square pro- 
file incident on a steel layer of thickness 2 mm at a frequency 
of 2 MHz are shown in Fig. 14. 

Instead of investigating plates one can also examine any 
other kind of layered medium. Considering a halfspace as 
the limit of a thick plate (Fig. 15 ), the existence of the leaky 
Rayleigh mode component in the liquid can be demonstrat- 
ed (Fig. 16). 
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Thin layers on substrates (or thick plates) hold the in- 
terest of many investigators. The three-dimensional plots in 
Fig. 17 represent the complex harmonic reflection moduli 
for different values of the thickness d of a steel layer mounted 
on a thick brass plate (at 5 MHz a brass plate of 2 mm is a 
reasonable approximation for a substrate). From a close 
look at this sequence, we can conclude that for values of the 
product frequency (f) times steel layer thickness (d) larger 
than a specific (fd)l the substrate remains invisible, while 
for values smaller than a certain (fd): the layer cannot be 
observed anymore. Indeed, comparing Fig. 17 (a) and (b) 
on the one side and Fig. 17 (e) and (f) on the other side, we 
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FIG. 14. "Square profile reflection (width = 4 mm) near Lamb angle (29 ø) through a stainless steel plate of 2.0 mm at 2 MHz. Incident profile: 
attendant reflected profile: ..... leaky Lamb wave component: .... . (a) 0 = 28*; (b) 0 = 29*; (c) 0 = 31'; (d) 0 = 32*. 

notice for large layer thicknesses only typical steel substrate 
phenomena and for smallfd values mainly typical brass phe- 
nomena. The limit angle behind which no surface modes can 
be detected (except the Stoneley wave) moves from the Ray- 
leigh angle for steel to the Rayleigh angle for brass, while the 
heterogeneity characteristic of the corresponding mode 
changes from the heterogeneity of a Rayleigh wave at a steel 
half-space to the heterogeneity of a Rayleigh wave at a brass 
substrate. Besides, at grazing incidence one observes a 
change in heterogeneity of the Stoneley waves from the spe- 
cific heterogeneity of a Stoneley wave at a water-steel inter- 
face (/3sw = 0.50/mm and velocity v = 1479.59 m/s) to the 
heterogeneity of this type of surface waves at a water-brass 
boundary (/3s = 1.287/mm and velocity v = 1477.29 m/s). 

These two observations illustrate that both presence and na- 
ture of surface waves are extremely sensitive to thickness for 
investigation of thin films. 

III. CONCLUSIONS 

We have shown that the description of bounded beams 
by the method of Claeys and Leroy can be extended to a 
more general approximation using both positive and nega- 
tive decaying heterogeneous waves. The total reflected and 
transmitted fields are found to be made up of an attendant 
profile and a leaky surface wave component exponentially 
decaying corresponding to the nature of the generated Ray- 
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FIG. 15. Heterogeneous wave reflection coefficients as function of angle of 
incidence and heterogeneity for a "thick" viscous brass plate (3 mm) in 
water at 5-MHz frequency. The major peak at about 47.5* corresponds to 
the Rayleigh wave. 
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FIG. 17. Sequence of three-dimensional figures of the heterogeneous wave reflection coeffcients as function of angle of incidence and heterogeneity for 
different combinations of a steel-brass bilayer in water at 5 MHz. (a) 2-mm steel layer without brass plate; (b) 1-mm steel layer on a 2-mm-thick brass plate; 
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leigh, Stoneley, or Lamb wave. However, the bulk inhomo- 
geneous energy component can only be physically interpret- 
ed in a meaningful way as a local trailing field connecting the 
scattered profile to the surface of the reflector/transmitter 
under consideration. The important fact is that this phenom- 
enon has been explained as a pure reflection/transmission 
effect in contrast with the classical approach of mode con- 
version of homogeneous waves into surface waves propagat- 
ing along the interface and reradiating after a certain dis- 
tance from the interface in the nature of a heterogeneous 
wave. The evidence of leaky wave components has been illus- 
trated for various kinds of layered media, related to reflec- 
tion and transmission and for different incident beam pro- 
files. 
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